Teaching physics visually

Art/science news  is usually about a scientist using their own art or collaborating with an artist to produce pieces that engage the public. This particular May 23, 2012 news item by Andrea Estrada on the physorg.com website offers a contrast when it highlights a teaching technique integrating visual arts with physics for physics students,

Based on research she conducted for her doctoral dissertation several years ago, Jatila van der Veen, a lecturer in the College of Creative Studies at UC [University of  California] Santa Barbara and a research associate in UC Santa Barbara’s physics department, created a new approach to introductory physics, which she calls “Noether before Newton.” Noether refers to the early 20th-century German mathematician Emmy Noether, who was known for her groundbreaking contributions to abstract algebra and theoretical physics.

Using arts-based teaching strategies, van der Veen has fashioned her course into a portal through which students not otherwise inclined might take the leap into the sciences — particularly physics and mathematics. Her research appears in the current issue of the American Educational Research Journal, in a paper titled “Draw Your Physics Homework? Art as a Path to Understanding in Physics Teaching.”

The May 22, 2012 press release on the UC Santa Barbara website provides this detail about van der Veen’s course,

While traditional introductory physics courses focus on 17th-century Newtonian mechanics, van der Veen takes a contemporary approach. “I start with symmetry and contemporary physics,” she said. “Symmetry is the underlying mathematical principle of all physics, so this allows for several different branches of inclusion, of accessibility.”

Much of van der Veen’s course is based on the principles of “aesthetic education,” an approach to teaching formulated by the educational philosopher Maxine Greene. Greene founded the Lincoln Center Institute, a joint effort of Teachers College, Columbia University, and Lincoln Center. Van der Veen is quick to point out, however, that concepts of physics are at the core of her course. “It’s not simply looking at art that’s involved in physics, or looking at beautiful pictures of galaxies, or making fractal art,” she said. “It’s using the learning modes that are available in the arts and applying them to math and physics.”

Taking a visual approach to the study of physics is not all that far-fetched. “If you read some of Albert Einstein’s writings, you’ll see they’re very visual,” van der Veen said. “And in some of his writings, he talks about how visualization played an important part in the development of his theories.”

Van der Veen has taught her introductory physics course for five years, and over that time has collected data from one particular homework assignment she gives her students: She asks them to read an article by Einstein on the nature of science, and then draw their understanding of it. “I found over the years that no one ever produced the same drawing from the same article,” she said. “I also found that some students think very concretely in words, some think concretely in symbols, some think allegorically, and some think metaphorically.”

Adopting arts-based teaching strategies does not make van der Veen’s course any less rigorous than traditional introductory courses in terms of the abstract concepts students are required to master. It creates a different, more inclusive way of achieving the same end.

I went to look at van der Veen’s webpage on the UC Santa Barbara website to find a link to this latest article (open access) of hers and some of her other projects. I have taken a brief look at the Draw your physics homework? article (tir is 53 pp.) and found these images on p. 29 (PDF) illustrating her approach,

Figure 5. Abstract-representational drawings. 5a (left): female math major, first year; 5b (right): male math major, third year. Used with permission. (downloaded from the American Educational Research Journal, vol. 49, April 2012)

Van der Veen offers some context on the page preceding the image, p. 28,

Two other examples of abstract-representational drawings are shown in Figure 5. I do not have written descriptions, but in each case I determined that each student understood the article by means of verbal explanation. Figure 5a was drawn by a first-year math major, female, in 2010. She explained the meaning of her drawing as representing Einstein’s layers from sensory input (shaded ball at the bottom), to secondary layer of concepts, represented by the two open circles, and finally up to the third level, which explains everything below with a unified theory. The dashes surrounding the perimeter, she told me, represent the limit of our present knowledge. Figure 5b was drawn by a third-year male math major. He explained that the brick-like objects in the foreground are sensory perceptions, and the shaded portion in the center of the drawing, which appears behind the bricks, is the theoretical explanation which unifies all the experiences.

I find the reference to Einstein and visualization compelling in light of the increased interest (as I perceive it) in visualization currently occurring in the sciences.